HYPOTHESIS TESTING (ch 8 sections 1 & 2)

A. DETERMINE H_0 (null hypothesis) and H_A (alternative hypothesis)

one mean			one proportion			two means*	two proportions*
$H_o: \mu =$	$H_o: \mu =$	$H_o:\mu=$	H _o : π=	Η ₀ : π=	Η _ο : π=	$H_0: \mu_1 = \mu_2$	$H_{0}: \ \Pi_{1} = \Pi_{2}$
H _A :µ≠	H_A : μ <	$H_A: \mu >$	H_A : $\pi \neq$	H_A : π <	$H_A: \pi >$	$H_A: \mu_1 \neq \mu_2$	$H_A: \Pi_1 \neq \Pi_2$
2 – tailed	left tailed	right tailed	2 – tailed	left tailed	right tailed	2 – tailed	2 - tailed

^{*} left tailed = lower tailed, right tailed = upper tailed

NOTE: two means, dependent (paired) samples use H_O: $\mu_D = \Delta$ where $\Delta = \mu_1 - \mu_2$

B. CHOOSE α LEVEL AND DETERMINE EFFECT OF TYPE I ERROR.

 α is the level of significance

 α (Probability of Type I error): Probability of rejecting H_O when H_O is actually true.

β (Probability of Type II error): Probablity of not rejecting H_O when H_O is false.

C. DETERMINE TEST STATISTIC (based on data and μ or π from H_O)

one mean: $t = \frac{x - \mu_o}{s / \sqrt{n}}$

one proportion: $z = \frac{p - p_0}{\sqrt{\frac{p(1-p)}{n}}}$

(p. 351, 357-8)

(not in book) $p_0 = \text{value from } H_0$

two means : $\left\{ \begin{array}{c} \text{df = see below,round down} \\ \Delta \text{ is } \mu_1 - \mu_2 \end{array} \right\} \qquad t = \frac{\left(\overline{x}_1 - \overline{x}_2\right) - \Delta}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$

$$t = \frac{\left(\overline{x}_1 - \overline{x}_2\right) - \Delta}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

p. 361-2

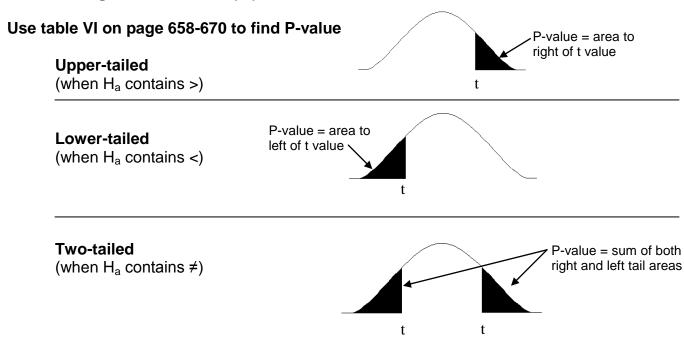
$$df = \frac{\left[(se_1)^2 + (se_2)^2 \right]^2}{\frac{(se_1)^4}{n_1 - 1} + \frac{(se_2)^4}{n_2 - 1}} \text{ where } se = \frac{s}{\sqrt{n}}$$

round down for df

= st. dev of pair differences

df = n - 1

^{*} also have left tailed and right tailed forms


two proportions

$$z = \frac{\left(\hat{p}_1 - \hat{p}_2\right)}{\sqrt{\hat{p}\hat{q}}\sqrt{\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$$

$$\hat{\mathbf{p}} = \frac{\mathbf{x}_1 + \mathbf{x}_2}{\mathbf{n}_1 + \mathbf{n}_2}$$

not in text

D. Determine the P-value (see page 353, 356)
based on upper-tailed, lower-tailed, or two tailed test, t-value (test statistic) and degrees of freedom (df)

E. Make a decision:

If $P \le \alpha$ level, reject H_O

If $P > \alpha$ level, do not reject H_0

F. SUMMARIZE DECISION – Include the α level, reject or accept H_O, and a brief description of H_O.